boxplot.with.outlier.label <- function(y, label_name, ..., spread_text = T, data, plot = T, range = 1.5, label.col = "blue",
jitter_if_duplicate = T, jitter_only_positive_duplicates = F)
{
# jitter_if_duplicate - will jitter (Actually just add a bit of numbers) so to be able to decide on which location to plot the label when having identical variables...
require(plyr) # for is.formula and ddply
# a function to jitter data in case of ties in Y's
jitter.duplicate <- function(x, only_positive = F)
{
if(only_positive) {
ss <- x > 0
} else {
ss <- T
}
ss_dup <- duplicated(x[ss])
# ss <- ss & ss_dup
temp_length <- length(x[ss][ss_dup])
x[ss][ss_dup] <- x[ss][ss_dup] + seq(from = 0.00001, to = 0.00002, length.out = temp_length)
x
}
# jitter.duplicate(c(1:5))
# jitter.duplicate(c(1:5,5,2))
# duplicated(jitter.duplicate(c(1:5,5,2)))
# jitter.duplicate(c(0,0,1:5,5,2))
# duplicated(jitter.duplicate(c(0,0,1:5,5,2)))
# handle cases where
if(jitter_if_duplicate) {
# warning("duplicate jutter of values in y is ON")
if(!missing(data)) { #e.g: we DO have data
# if(exists("y") && is.formula(y)) { # F && NULL # F & NULL
y_name <- as.character(substitute(y)) # I could have also used as.list(match.call())
# credit to Uwe Ligges and Marc Schwartz for the help
# https://mail.google.com/mail/?shva=1#inbox/12dd7ca2f9bfbc39
if(length(y_name) > 1) { # then it is a formula (for example: "~", "y", "x"
model_frame_y <- model.frame(y, data = data)
temp_y <- model_frame_y[,1]
temp_y <- jitter.duplicate(temp_y, jitter_only_positive_duplicates) # notice that the default of the function is to work only with positive values...
# the_txt <- paste(names(model_frame_y)[1], "temp_y", sep = "<<-") # wrong...
the_txt <- paste("data['",names(model_frame_y)[1],"'] <- temp_y", sep = "")
eval(parse(text = the_txt)) # jutter out y var so to be able to handle identical values.
} else { # this isn't a formula
data[,y_name] <- jitter.duplicate(data[,y_name], jitter_only_positive_duplicates)
y <- data[,y_name] # this will make it possible for boxplot(y, data) to work later (since it is not supposed to work with data when it's not a formula, but now it does :))
}
} else { # there is no "data"
if(is.formula(y)) { # if(exists("y") && is.formula(y)) { # F && NULL # F & NULL
temp_y <- model.frame(y)[,1]
temp_y <- jitter.duplicate(temp_y, jitter_only_positive_duplicates) # notice that the default of the function is to work only with positive values...
environment(y) <- new.env()
assign(names(model.frame(y))[1], temp_y, environment(y))
# Credit and thanks for doing this goes to Niels Richard Hansen (2 Jan 30, 2011)
# http://r.789695.n4.nabble.com/environment-question-changing-variables-from-a-formula-through-model-frame-td3246608.html
# warning("Your original variable (in the global environemnt) was just jittered.") # maybe I should add a user input before doing this....
# the_txt <- paste(names(model_frame_y)[1], "temp_y", sep = "<<-")
# eval(parse(text = the_txt)) # jutter out y var so to be able to handle identical values.
} else {
y <- jitter.duplicate(y, jitter_only_positive_duplicates)
}
}
}
# the_txt <- paste("print(",names(model_frame_y)[1], ")")
# eval(parse(text = the_txt)) # jutter out y var so to be able to handle identical values.
# print(ls())
# y should be a formula of the type: y~x, y~a*b
# or it could be simply y
if(missing(data)) {
boxdata <- boxplot(y, plot = plot,range = range ,...)
} else {
boxdata <- boxplot(y, plot = plot,data = data, range = range ,...)
}
if(length(boxdata$names) == 1 && boxdata$names =="") boxdata$names <- 1 # this is for cases of type: boxplot(y) (when there is no dependent group)
if(length(boxdata$out) == 0 ) stop("No outliers detected for this boxplot")
if(!missing(data)) attach(data) # this might lead to problams I should check out for alternatives for using attach here...
# creating a data.frame with information from the boxplot output about the outliers (location and group)
boxdata_group_name <- factor(boxdata$group)
levels(boxdata_group_name) <- boxdata$names[as.numeric(levels(boxdata_group_name))] # the subseting is for cases where we have some sub groups with no outliers
boxdata_outlier_df <- data.frame(group = boxdata_group_name, y = boxdata$out, x = boxdata$group)
# Let's extract the x,y variables from the formula:
if(is.formula(y))
{
model_frame_y <- model.frame(y)
y <- model_frame_y[,1]
x <- model_frame_y[,-1]
if(!is.null(dim(x))) { # then x is a matrix/data.frame of the type x1*x2*..and so on - and we should merge all the variations...
x <- apply(x,1, paste, collapse = ".")
}
} else {
# if(missing(x)) x <- rep(1, length(y))
x <- rep(1, length(y)) # we do this in case y comes as a vector and without x
}
# and put all the variables (x, y, and outlier label name) into one data.frame
DATA <- data.frame(label_name, x ,y)
if(!missing(data)) detach(data) # we don't need to have "data" attached anymore.
# let's only keep the rows with our outliers
boxplot.outlier.data <- function(xx, y_name = "y")
{
y <- xx[,y_name]
boxplot_range <- range(boxplot.stats(y, coef = range )$stats)
ss <- (y < boxplot_range[1]) | (y > boxplot_range[2])
return(xx[ss,])
}
outlier_df <-ddply(DATA, .(x), boxplot.outlier.data)
# create propor x/y locations to handle over-laping dots...
if(spread_text) {
# credit: Greg Snow
require(TeachingDemos)
temp_x <- boxdata_outlier_df[,"x"]
temp_y1 <- boxdata_outlier_df[,"y"]
temp_y2 <- temp_y1
for(i in unique(temp_x))
{
tmp <- temp_x == i
temp_y2[ tmp ] <- spread.labs( temp_y2[ tmp ], 1.3*strheight('A'), maxiter=6000, stepsize = 0.05) #, min=0 )
}
}
# max(strwidth(c("asa", "a"))
# move_text_right <- max(strwidth(outlier_df[,"label_name"]))
# plotting the outlier labels :) (I wish there was a non-loop wise way for doing this)
for(i in seq_len(dim(boxdata_outlier_df)[1]))
{
# ss <- (outlier_df[,"x"] %in% boxdata_outlier_df[i,]$group) & (outlier_df[,"y"] %in% boxdata_outlier_df[i,]$y)
# if(jitter_if_duplicate) {
# ss <- (outlier_df[,"x"] %in% boxdata_outlier_df[i,]$group) & closest.number(outlier_df[,"y"] boxdata_outlier_df[i,]$y)
# } else {
ss <- (outlier_df[,"x"] %in% boxdata_outlier_df[i,]$group) & (outlier_df[,"y"] %in% boxdata_outlier_df[i,]$y)
# }
current_label <- outlier_df[ss,"label_name"]
temp_x <- boxdata_outlier_df[i,"x"]
temp_y <- boxdata_outlier_df[i,"y"]
# cbind(boxdata_outlier_df, temp_y2)
# outlier_df
if(spread_text) {
temp_y_new <- temp_y2[i] # not ss
move_text_right <- strwidth(current_label)
text( temp_x+move_text_right, temp_y_new, current_label, col = label.col)
# strwidth
segments( temp_x+(move_text_right/6), temp_y, temp_x+(move_text_right*.47), temp_y_new )
} else {
text(temp_x, temp_y, current_label, pos = 4, col = label.col)
}
}
# outputing some of the information we collected
list(boxdata = boxdata, boxdata_outlier_df = boxdata_outlier_df, outlier_df=outlier_df)
}